
Propagating Resource Constraints Using Mutual Exclusion Reasoning *

Romeo Sanchez & Minh B. Do

Dept. of Computer Science & Eng.

Arizona State University

Tempe AZ 85287-5406

Email: {rsanchez,binhminh) @ asu.edu

Jeremy Frank

NASA Ames Research Center

Mail Stop N269-3

Moffett Field, CA 94035-1000

Email: frank @ptolemy.arc.nasa.gov

Abstract

One of the most recent techniques for propa-

gating resource constraints in Constraint Based

scheduling is Energy Constraint. This technique

focuses in precedence based scheduling, where

precedence relations are taken into account rather

than the absolute position of activities. Although,

this particular technique proved to be efficient on

discrete unary resources, it provides only loose

bounds for jobs using discrete multi-capacity re-

sources. In this paper we show how mutual ex-

clusion reasoning can be used to propagate time

bounds for activities using discrete resources. We

show that our technique based on critical path

analysis and mutex reasoning is just as effective on

unary resources, and also shows that it is more ef-

fective on multi-capacity resources, through both

examples and empirical study.

1 Introduction

Scheduling problems are fundamentally concerned with the

interaction of temporal constraints and resource constraints.

Tasks that require the same resources lead to a choice of

precedence, but some choices may be impossible due to the

absolute and relative constraints on the timing of activities. A

number ot techniques have been developed to propagate re-

source and temporal constraints. Laborie [1] provides a good

survey of these results, including Timetabling [2], Edge Find-

ing [3; 4], and Energetic Reasoning [8]. Based on the survey,

Laborie developed a technique called the Energy Precedence

Constraint (EC3. This constraint works on resources that are

"The authors would like to acknowledge the contributions of

David Smith and Subbarao Kambhampati. This work was done
while the first two authors were at NASA Ames Research Center.

used then released (called discrete resources by Laborie). The

idea is to estimate the time required to execute all activities

on a single resource by computing the "energy", that is the

sum of the duration of the activities times the amount of the

resource they require, then computing the minimum duration

by dividing the energy by the amount of the resource avail-

able.

The EC is simple to compute, but results in loose computa-

tional bounds in cases where the total capacity of a resource is

exceeded by the resource consumption of the activities. We

observe that a simple analysis of the activities can lead to

the discovery of mutual exclusions among group of activities.

This can result in improved bounds on such problems with
small cost.

The rest of the paper is organized as follows. Section 2

introduces the preliminaries of our work, and a short descrip-

tion of the energy bound EB propagated by the energy con-

straint procedure. Section 3 will describe the idea of our con-

strait propagation technique called CPMB (critical path plus

mutex bounds), and one extension for multiple machine muI-

tiple capacity problems, called GMB (group mutex bounds).

Then, Section 4 presents an example and the possible best and

worst case scenarios for the propagation techniques described

in this paper. Section 5 will introduce some aspects of our im-

plentation which affect the way resource constraints get prop-

agated. Section 6 will provide empirical evaluation of our

techniques, showing that CPMB propagates more constraints

than EB in presence of mutex information, reducing the ex-

ecution time and number of nodes generated during search.

Finally, Section 7 presents the conclusions and some ideas
for future work.

2 Preliminaries

We consider a set of activities A. Each activity uses one of a

set of resources _R(We can consider activities using multiple

resources without loss of generalitiy). Each activitiy has an

earliest start and a latest end time, a fixed duration and a fixed

resource requirement. Each resource has a maximum capac-

ity. All activities utiiize the resource from the time it begins

until the time it terminates (i.e. all resources are discrete in

the sense defined by Laborie [1]). There may be precedence

constraints between activities; if activity i must precede ac-

tivity j, then the end of activity i must occur before the be-

ginning of activity j (i.e. RCPSP).

Our task is to search for a Schedule, by which we mean an

order in which the activities execute that does not violate any

of the resource capacity constraints or the precedence con-

straints. We do not need to search for an assignment of abso-

lute start times to the activities. In the case of multi-capacity

problems, activities can overlap, as long the resource capacity

constraints are not violated.

A new algorithm to propagate resource constraints on dis-

crete resources is described in [I]. This procedure is calIed

the Energy Precedence Constraint (EC). So, given an activity

x the energy bound EB on the lower bound of the start time
of x is calculated as follows:

LB(x)>_rnin(MinStart(Ai) + E(q(Ai) * d(Ai))/Q.

Where, each Ai corresponds to every activitiy that is con-

strained to execute before x, and q and d are the resource

consumption and duration for each activity respectively. Al-

though this algorithm is very simple to compute, it may re-

sult in loose constraint bounds. As an example, consider

two tasks A and B that precede some timepoint x. Let

d(a) = 5, d(B) = 10, q(A) = 3, q(B) = 2. Assume

both ,4 and B use the same resource, and assume that the

capacity of that resource is 4. Now, the EC tells us that

LB(X) > 5,3+10,2 _ 8.75. But it is easy to see that these

tasks can't overlap because of the resource bound, and so

LB(x) >>_15. We will show that a simple analysis of the

activities will provide mutual exclusion information that can

improve LB (x) in cases like these with a very small cost.

3 Critical Path Analysis and Mutex

Reasoning

We have seen already that the Energy Bound (EB) from the

Energy Precedence Constraint EC described in Section 2 has

some limitations. Specifically, it can provide loose computa-

tional bounds on the start and end time points of the activities

when the total resource capacity is exceeded by the resource

consumption of the activities. In this section, we will describe

a technique to do constraint propagation based on critical path

analysis and mutex reasoning. We will call this bound Criti-

cal Path Mutex Bound (CPMB).

The precedence graph will contain all of the current activ-

ities (tasks) that have a precedence constraint between each

other at any given time point. Each node in the graph repre-

sents an activity from the original scheduling problem. Obvi-

ously, finding the longest path in this precedence graph from

the beginning of the schedule to a given activity x leads to

the critical path for such given task x. The sum of the du-

rations of the activities in the critical path will indicate the

lowest bound on the starting time point of x. In other words,

x can not start before the bound indicated by its critical path

in the precedence graph. It should be noted that propagation

of Simple Temporal Networks as described in Dechter Meiri

and Pearl [7] accomplishes this. Critical Path Analysis can

be used also in the scheduling framework to find new bounds

for tasks. These new bounds can help the scheduler to prune

search branches that lead to the violation of temporal con-

straints, or guide the search by combining them with some

heuristics.

Our framework will not only have a precedence graph but

also a mutual exclusion graph. The precedence graph con-

tains the activities as nodes and the precedence relations be-

tween them as edges. The mutual exclusion graph contains

also activities, and mutex relations, which are not only ob-

tained from the precedence information but also from the re-

source consumption of the activities (two activities are mu-

texes also if they consume more than the total capacity of

their resource). In other words, the edges in the mutual ex-

clusion graph represent all possible mutex relations in our

scenario, which include mutexes by precedence and by re-

source consumption. Using this graph we can'find any clique

of mutex activities, and use it to augment if possible the crit-

ical path. Observe that a part of this graph is static, since the

resource consumption of the activities will not change over

time. Given this, a subset of the graph is computed just once

before the search procedure starts, and it is used during the

search process to augment the critical path for any task to get

improved bounds.

A clique in these graphs is a set of vertices in which each

vertex has one edge to every other vertex. We can observe

easily that any path in the precedence graph is a clique, since

each activity on the path has a precedence constraint to every

other activity in such a path. We can say then that these activ-

ities are mutexes with each other given the precedence con-

straints. We can retrieve these paths directly from the mutual

exclusion graph. The precedence relations form the basis for

the mutual exclusion relations in precedence constraint based

scheduling. However, we still can augment such cliques by

looking at the resource consumption of the activities inside

the mutual exclusion graph of a given resource. So, if we

Res 1

Res 1

Res 2

B

IT"j
Res 2

X

Figure 1: Group Mutex Bound Example

have a path P that is a critical path for an activity, z, we can

augment the lower bound on the starting point of x by con-

sidering a set of activities S ¢ P before x, such that Vi E S

and Vj E P the resource consumption of i and j exceeds the

total capacity of the resource. In other words, the activities

are mutexes not only by precedence relations but also by the

amount of resource used by them. We can observe that we

are augmenting the initial clique formed from precedence re-

lations, with activities from the mutual exclusion graph that

are mutexes because of resource consumption with all the ac-

tivities in such original clique. The same reasoning follows to

compute the upper bound of any activity. The resulting bound

is what we call Critical Path Mutex Bound (CPMB).

To reduce the complexity of finding a critical path we on!y

consider activities involving the same resource. This is rea-

sonable in problems in which each task uses only one re-

source, as in our scenario. Under this circumstance the num-

ber of precedence relations in the graph is small, and the crit-

ical path computation remains feasible. The mutex cliques

with respect to resource consumption are also limited because

they are computed before hand only once, and used during the

search to augment critical paths.

One final observation between the EB and CPMB bounds

is that in problems involving unary-capacity resources like

unary JSPs, both of the bounds have the same effect in propa-

gating constraints. Given that in unary-JSP the total capacity

of a resource is 1 and the total consumption of each activity is

also 1, then the formula in [1] will be equal to computing the

total durations of the tasks in the current set being evaluated,

which in consequence is equal to the critical path contained in

that set. The resulting bound with EB will be the same than

to the value obtained by the critical path of such a set. We

will show some results that support our claim in Section 6.

Our motivation is to show that this condition does not hold

when we move into multi-capacity problems, where mutex

and precedence information can really help us to propagate

better constraints.

One of the main limitations of the Energy Bound EB is

that it will only work for a set of tasks S using the same

resource. So, our main motivation is to find a propagation

procedure that works not only under this circumstance but

also with tasks having mutex relations with each other and

not necessary using the same type of resource. Given this, we

can analyze bigger sets of tasks using the precedence relations

or cliques, which can lead us to better bounds. Although the

size of the set S is important, it is even more important to

identify the interactions between the tasks in the set. This is-

sue is captured by the mutual exclusion information. So, if

we can identify mutex or precedence relations between tasks

using multiple resources and time lines, then the bounds will

be improved for propagation, as in the case of the CPMB de-

scribed before. The energy bound will not benefit from this

fact. We can see a very simple example of this scenario on

Figure 1. In the figure, lines represent precedence relations

and dashed lines represent mutex relations. Suppose that A

and S are activities using one resource, and B and T are tasks

using another resource. We can observe that A and S are mu-

texes because of their resource consumption, as well as B and

T, but EB can not find this information since it relies in the

precedence relations to calculate its bounds and there are not

such relations between these activities. Moreover, the prece-

dence relations in this example are defined between activities

in multiple resources. Specifically, there is a precedence re-

lation between A and/3, and B and T, but these activities

are using different resources and in consequence EB can not

calculate any bounds. Mutex reasoning then can be very im-

portant to improve our constraint propagation. Since we may

have multiple groups of activities interacting between multi-

ple resources as in our last example. We need a definition

that captures this information, in which we are looking for

any bounds based on multiple groups.

Definition 1 (Group Mutex) Two sets of activities A and B

are mutex with each other ifVi E A and Vj E B, i and j are

mutex. Given this, we say that a group of sets of activities G

is a Group Mutex/ffevery set Sg in the group is mutex with

all other sets.

We can observe that if two sets of activities St and $2

are mutex with each other, and both are a subset of G, then

Bounda >_Boundsl + Bounds2. The bound from the over-

all set G will be never smaller than the bounds of its subsets

when computed with any of the bounds discussed before (e.g

EB, CPMB). The bounds obtained by Group Mutex Analysis

10 30

.... 5s,T-
20 10 "':" I "'. 20

_'-" ,* I I

I-2 +2[,: : ,,
x]

x I /
x /

x

I /

25

Figure 2: Propagation of Constraint Bounds

will be called GMB (Group Mutex Bound). BoundG is not

more than the minimum makespan of the group G, which is

at least the minimum makespan of S1 plus the minimum one

of 5'2. We can observe from our last example from Figure 1

that GMB can be computed. Basically, let SI=(A, S), and

S2=(B), which satisfies the GMB definition. Then, we can

calculate easily the bounds for 5'1 using CPMB for example,

and add the result up with the makespan of $2. This scenario

can not be handled by EB.

We can see that computing such a bound may be very ex-

pensive. However, we can compute cheaper forms of GMB.

Specifically, we can find a small group mutex G, and consider

the bounds of such a group on different ways. We can also

compute aproximations of the longest path in those groups

to avoid blowing up the search. Although, this pa_icular con-

straint propagation technique has not been fully implemented,

we will show its effectiveness with an example in the next
section.

Critical Path Analysis can be used also in the scheduling

framework to find new bounds for tasks. These new bounds

can help the scheduler to prune search branches that lead to

the violation of temporal constraints, or guide the search by

Combining them with some heuristics.

4 Methodology for Computing the Different

Bounds

We will show in this section the different ways to compute

bounds for propagation. We will illustrate with an example

such computation, and we will argue the different methods

used in our framework to integrate the algorithms for propa-

gating the resource constraints.

X

4.1 Developed Example

We will show with an example the different bound values ob-

tained by the techniques described in the last section. In Fig-

tare 2 there are 7 tasks, which are constrained to occur before

a particular task X. Six tasks are competing for the same re-

source R. In particular, A1...A6 consume different amounts

of such resource. Tasks correspond to nodes in the graph. The

numbers above the nodes indicate the durations of the activ-

ities. We assume that each task releases the same amount of

resource used at the end of its execution. Total quantity of

the resource tt for this example is 3. Precedence constraints

are represented by arrows in the graph, and mutex constraints

are represented by dashed lines. Notice that any precedence

relation implies a mutex relation, but not viceversa. A mutex

relacion can be based on the resource consumption of the ac-

tivities, if they exceed the capacity of the resource then they

are obviously mutex with each other. In Figure 2, A2 and

As are mutexes by resource consumption. However, the mu-

rex constraints can also be caused by another reason due to a

different resource. In our example, we have A7 mutex with

A2, As, and At, since A7 uses another resource that interacts

with the first resource [6]. From the discussion in the last

section, we can compute the following bounds:

Energy Bound (EB)= ((1"10) + (3*30) + (2*20) + (1"10)

+ (2*20) + (2*20)) / 3 = 230/3 = 76.66

Critical Path Mutex Bound(CPMB): If we consider the

critieaIpath of the graph in Figure 2, then the longest prece-

dence path will be A3, A4, A_, with a bound of Critical Path

= 20+10+20=-50. But, now we can do mutex analysis to im-

prove even more this initial bound given by the critical path.

From the mutual exclusion graph, we can see that A2 is mu-

tex with every activity on the critical path because of resource

consumption. Then, the final estimate for CPMB is 80.

If we would like to estimate the bound given by GMB,

there are multiple partitions of the activities in this example.

Let's consider two of them. Suppose there are two groups, St

and 5'2. Let Sz = AT, and 5'2 = A1, A3, A4, As, At. The best

bound for $2 is given by a clique of length 60 (A3, As, At).

So, the GMB = 25 + 60 = 85. We can observe that GMB

can be very useful in problems involving multiple resources.

However, finding a good partition of the set of activities in

multiples groups remain an open question. Such partitions

can be based on paths and can be augmented With additional

mutex activities as in this example.

We have presented in this section an example which clearly

indicates the benefits of using mutex information for propa-

gating constraints bounds on multi-capacity scheduling prob-

lems. We have seen that CPMB can provide a better estimate

than EB in problems where there are many activities being

20

-2 A +2

\ 2O

-1 B +1

Figure 3: Critical Path Analysis Scenario

mutexes by some reason other than a precedence relation (i.e.

resource consumption). We can observe that the computation

of the critical path is feasible in problems where each activ-

ity uses only one resource because the precedence graph of

the resource will be very small, as in this example. How-

ever, good aproximations algorithms are required if we want

our aptSroach to scale up to problems where tasks can involve

multiple resources.

4.2 Possible Search Scenarios

It is important to identify what kind of scenarios can arise dur-

ing the search, such that each propagation technique can ben-

efit from it. This is the first step in understanding which type

of bound reasoning would be more adequate given the current

snapshot of the search. Most of the discussion is based on

the Energy Bound (EB) and critical path plus mutex bounds

(CPMB).

Scenario I When we have more precedence constraints

forrning long critical paths, CPMB will provide better bounds

than EB

Figure 3 shows an example of such a situation. In this ex-

ample, tasks A and B are constrained to be before X in the

precedence graph. A consumes 2 units of the resource and/3

1 unit. The resource has a maximum capacity of 4. Further-

more, the duration of each of the activities is 20. The Energy

Constraint will find a bound of EB= ((20"2)+(20"1))/4 = 15.

This bound is even smaller than the duration of any of the

tasks, which is 20. Instead, the critical path analysis CPMB

will return the bound value of 40, since there is a precedence

constraint between A and/3 forming these two actions the

critical path to X.

Scenario 2 When critical paths are short, it is more likely

that we may have a set of tasks consuming the same resource,

which can possibly overlap. Therefore, the Energy Constraint

procedure may give a better bound.

We can observe one example of this scenario in Figure 4,

In this example all five tasks have a duration of 20, and each

one consumes 2 units of the resource excepting A, which con-

sumes 3 units. The capacity of the resource is 4 as in the pre-

2O

I-2 B +2 1 20

-320A +3 2_'"2222---'"..... - 2 C +2

J l-2 D+2
X

Figure 4: Energy Constraint Procedure Scenario

vious example. In this example, the Energy Constraint will

find a bound EB=(20"2"4 + 20*3)/4=50. At the same time

the critical path analysis alone will find a bound of 20, since

there are no precedence relations between the activities all of

the paths in the graph are very short. CPMB will give a bound

of 40, since A is mutex with everybody else. We can observe

then that EB is better for this particular example. However,

notice that if we do group mutex reasoning, the bound ob-

tained will be better than the EB. Given that A is mutex with

everybody else because of its resource consumption, then A

forms a group and the rest of the activities one more. Then,

GMB=Bound(A)+Bound(B , C, D, E)=20+(20"2"4)/4=60.

Under these scenarios one technique can work better than

the other one. The complexity of critical path analysis is com-

pensated by the accuracy of the procedure when mutex infor-

mation is given. This combination of factors allows CPMB to

remain competitive with respect to EB in the scenarios such

as that shown in Figure 4, and to outperform EB in the other

ones. We will present some empirical results on this intuition

on Section 6 by running both techniques in unary-capacity

and multi-capacity single resource scheduling problems.

5 Experimental Framework

We have discussed in general form the application of different

constraint propagation techniques. In this section, we discuss

some details of the applicability of such techniques into our

framework, and how the framework may affect the computing

procedure or usefulness of the different bound analysis. The

characteristics of our implementation related to resources are:

1. The temporal relations between time points are man-

aged by a Simple Temporal Network (STN) implement-

ing the algorithm described in [7],

2. The relative relations between any pair of activities

given the the precedence constraints (e.g. before/after)

are not explicitly represented in our framework. How-

ever, they can be extracted using the STN.

3. Whenevertheorderingbetweentwotasksisestablished,
theconstraintmanagerwillautomaticallyenforcecon-
sistencyin thetemporalnetwork.Whenaprecedence
variablebetweentwotasksisset,theSTNwilldoprop-
agationandenforcenewlower/upperboundsOnthe
start/endtimepointsofanyinvolvedtasks.

4. Weemployaresourcemanagerthatassumesthatre-
sourcesarediscrete.

5. Ontopofthesestructures,wehaveimplementedasim-
plebacktrackingalgorithmthatperformsvariableand
valueorderingusingheuristics.Thesearchisconducted
overtherelativeorderofpairsoftasksthatusethesame
resource;in thecaseof multicapacity resources, we in-

clude an explicit "overlap" choice as well. We use the
B-Slack heuristics of [5] for both variable and value or-

dering.

6. The "overlap" choice is preferred during the search by

the heuristics. So, if any two tasks have the opportunity

of "overlap" because they do not exceed the resource

capacity of the resource, then the heuristics choose this

option first, otherwise it computes the B-Slack as de-

scribed in [5] and picks the best.

The idea behing B-Slack is that we want to choose the vari-

able with the overall minimum temporal slack in its sequenc-

ing decision, And a Value that provides the maximum slack

for the variable. The B-Slack heuristics includes additional

search bias to consider situations in which the criticality of

the ordering decisions not only depends from the minimum

slack but also from the larger one. A complete description of

the heuristic is found in [5].

Following these specifications, there are some important

questions that need to be answered with respect to our design.

The first one is how to obtain the set of tasks before/after a

given task. We have two choices in our implementation. We

can either rely on the values of the decision variables or com-

pute every time the temporal relations from the temporal net-

work. Obviously, the second approach is more expensive, but

it is also more accurate given that the STN will enforce con-

sistency automatically, changing the values of the variables

continuously.

Another question is when should we call any of the prop-

agation techniques discussed in this article (e.g. EB, CPMB,

etc). The most natural way is to call them whenever we assign

a value to a precedence variable (e.g. before or after a given

task), such that new lower and upper bounds can be propa-

gated on the start and end time points of the tasks involved in

the decision. Given the design of the framework, we do not

need to care about indirect effects of new constraint bounds

explicitly during the search, since consistency is enforced au-

tomatically by the STN. We have to consider only the tasks

involved directly in the precedence relation, and the temporal

network automatically enforces the constraint propagation for

those activities indirectly affected by the current decision. By

doing this, we are able to apply the B-Slack based heuristics

from [5] to decide which variable and value to assign at each

iteraction. So, we first compute the next variable and its value

to consider given the heuristics, and we use EB or CPMB to

propagate any constraints related to any assignment to that

variable. This interaction between heuristics and constraint

propagation techniques speeds up the search process.

Another approach is to consider running any constraint

propagation technique before assigning any value to the cur-

rent variable. In other words, if we have an X variable with

domain before, after, then we consider one assignment to the

variable (e.g. before), and run the constraint propagation

technique. And, we do the same with the rest of the values

of the variable. After the constraint propagation procedure is

done, we compute the slacks of the variable again and choose

the best value for the decision. The intuition is that by run-

ning the constraint propagation procedure first the different

slack values of the variable may change, and the heuristics

will be able to capture such information. However, we can

observe that such a technique is more computationally ex-

pensive since it propagates in all values of a given variable.

An empirical evaluation of these two techniques will be pre-

sented in Section 6.

Observe that the constraint propagation techniques de-

scribed in this article not only help to find new bounds, but

also to find inconsistencies. In other words, it can help the

heuristics by giving additional information on the start and

end points of variables with the new bounds propagated, and

it can help also the search process by pruning some branches

which lead to an inconsistency. There are two types of incon-

sistencies: Direct Inconsistency, and Indirect Inconsistency.

1. Direct inconsistency: The propagation pushes the new

lower bound of an activity to a value that is bigger than

its upper bound, and viceversa. We can observe that

the inconsistency is directly related to the variable being

evaluated.

2. Indirect inconsistency: There is not a direct effect when

a new bound for a variable is posted, but the new value

makes other task's bounds to become invalid, an indirect

effect.

We can observe that constraint propagation can help not

only to adjust the values of the variables in the precedence

graph, such that any heuristics can benefit from it, but also to

pruneanyinvalidbranchesduringthesearch,thosebranches
thatleadtoanyoftheinconsistenciesdescribedbefore.

6 Empirical Evaluation

All the experiments have been run on a SUNg/, Ultra - 80

workstation running Solaris with 1GB of RAM. The tables

reflect the solution of the problems running B-Slack based

heuristics without any constraint propagation (BS), with En-

ergy Constraint (BS + EB), and with Critical Path Mu-

tex Bounds (BS + CPAIB). In order to show the effect

of computing the propagation technique in different ways

as explained in the last section, we include a set of exper-

iments running first EB and calculating the heuristic next

(EBF + BS). Observe that we did not include CPMB in

such analysis because the result of its propagation procedure

is the same than the one from EB in unary JSPs. All of the

problems have been randomly generated. In single machine

unary problems, a number of resources and jobs are given to

the generator, as well as the range for the durations of the ac-

tivities. The generator then creates randomly all of the tasks

for each job, and their durations. In case of multi-capacity

problems, a total capacity is given for each each resource, and

the generator creates in addition to the information explained

above, the resource consumptions for each task in the prob-

lem. The problems were solved different number of times

considering different horizon values. Once the data is col-

lected, the horizon that seems close to the optimal is chosen

to run the final tests in all propagation techniques. The reason

for this procedure is that we do not want a very loose horizon

because EB and CPMB would not propagate any constraints.

Table 1 shows the execution time and number of nodes

generated by the different techniques. All the running times

are in seconds. The problems are single machine unary ca-

pacity, where each activity uses one resource and consumes

one unit of that resource. The size of the problems are 6x6

(T set) and 7x7 (P set). We can observe on this table that EB

and CPMB will perform almost equally. In this set of prob-

lems there is not aditional mutex information that can help

CPMB. As introduced in Section 3, each activity consumes

the total capacity of the resource, because it is a unary prob-

lem, and by consequence the bound obtained by EB will be

the same than the length of the critical path. Since there is

no additional mutex information for CPMB, this technique

will return the length of the critical path, and by consequence

EB and CPMB will propagate the same amount of constraints

during the search process. This has been already verified, but

it has not been included in the table for space limitations. We

can observe that there is a minor difference in the execution

time of both techniques, given that CPMB is more expensive

P_ob I
T1

"I"2

T3

T4

T5

Pt

P2

P3

P4

P5

BS BS+EB BS+CPMB EBF+BS

43.89/289 3.03/90 3.59/90 4.37/90

48.46/284 I4.88/I31 15.56/131 16.29/131

706.71/3318 8.11/105 8.80/105 9.55/105

74.86/411 4.71/93 5.14/93 6.07/93

21.69/176 7.24/109 7.92/109 8.54/109

948.86/2131 49.34/219 54.09/219 48.35/208

28838/59447 10.16/147 11.55/147 13.99/147

623.54/1482 36.60/227 39.10/227 41.48/227

4834.49/9132 22.28/168 23.95/168 26.42/168

649.12/1636 7.91/147 9.77/147 11.87/147

Table 1: Single Machine Unary Capacity Random Generated

Problems

to compute, but still CPMB has an acceptable performance.

The last column of Table 1 shows the results by doing con-

straint propagation first and then using the heuristics to select

the next best possible value for a variable. We can observe

that the effect of doing the propagation procedure first does

not seem to affect the heuristics.

Table 2 shows the execution time and number of nodes in

single machine multi-capacity problems. We have two sets of

problems, the set S (5x5) and the set P (6X6). These sets of

problems includes additional mutex information for CPMB,

because there are mutex constraints given not only by prece-

dence relations, but also by the resource consumptions be-

tween the activities. Recall from Section 3 than CPMB uses

such mutex information to augment its critical path and get

improved bounds. We can observe that the mutex information

is in fact very useful, since it helps to reduce the number of

nodes and increase the efficiency of the search process. An-

other observation that we found is that the bigger the schedul-

ing problem the more we can find activities being mutexes

by resource consumption. However, finding paths becomes

more difficult too. By doing this simple mutex analysis, we

have shown that CPMB in fact can result in improved bounds

for the problems with little cost. We can observe also that EB

seems to confuse the heuristics in these kinds of problems. In

fact, searching using only heuristics is better than using EB in

some of the problems from Table 2. For CPMB this is not the

case, because the combination of the heuristics and CPMB

did not lead to bad performance.

7 Conclusions and Future Work

We have described a technique to propagate resource con-

straints using mutex reasoning in precedence based schedul-

ing. Such technique called CPMB (critical path plus mutex

bounds) takes into account a precedence graph, and computes

the critical path for any given activity to propagate, and aug-

l_ob I
S1

$2

$3

$4

$5

T1

T2

T3

T4

T5

BS BS+EB BS+CPMB

325.35 / 1967 336.75 / 1970 237.85 / 1390

24.40/198 26.11 / 198 6.85/86

443.05 / 2775 371.32 / 2227 305.74 / 1835

324.34 / 2154 292.76 / 1785 274.39 / 1653

106.98 / 741 89.93 / 575 56.64 / 341

162.91/496 330.92/976 121.17/380

977.44 / 2568 741.13 / 1916 645.41 / 1701

102.01/370 105.59/370 69.10/259

6686.13/20354 7793.10/20354 I 6119.71 / 17569

187.66/472 196.61/472 I 138.22 / 327

Table 2: Single Machine Multiple Capacity Random Gener-

ated Problems

ment such a path using mutex information based on resource

consumption from a mutual exclusion graph. Although, this

technique seems very complex, we have decreased the com-

plexity by considering problems in which each activity uses

only one resource. We have compared our constraint prop-

agation procedure to a state of the art algorithm, the Energy

Constraint EB. We have shown that our implementation re-

mains competitive in its worst case scenarios on single ma-

chine unary capacity problems, and it results in improved

bounds on multi-capacity problems where mutex information

is available.

We are also investigating the tradeoff of using different

constraint propagation techniques during search. Specifically,

by interacting EB and CPMB in the same propagation loop.

Furthermore, we are analyzing any possible effects of the

propagation techniques in the heuristics functions in order to

find better heuristics, which can be less affected.

Since EB works only on problems in which tasks use only

one resource, we have proposed a technique based on CPMB

which will allow to scale up to multiple machine multiple ca-

pacity problems. This technique is called GMB, group mutex

bounds. Specifically, we have demonstrated with some ex-

amples the effectiveness GMB on these kinds of problems.

Complete implementation of this technique and alternative

approximations for the calculation of critical paths are being

considered as future work.

References

[1J P. Laborie. Algorithms for Propagating Resource Con-

straints in AI Planning and Scheduling: Existing Ap-

proaches and New Results In Proc. ECP-O1, 2001.

[2] B.Drabble and A.Tate. The Use of Optimistic and Pes-

simistic Resource Profiles to Inform Search in an Activ-

ity Based Planner. In Proc. AIPS-94, 1994.

[3] J.Carlier and E. Pinson. A Practical Use of Jackson's

Preemptive Schedule for Solving the Job-Shop Prob-

lem. In Annal of Operation Research, 1990.

[4] W. Nuijten. Time and Resource Constrained Schedul-

ing: A Constraint Satisfaction Approach. PhD Thesis,

Eindhoven University of Technology, 1994.

[5] S.E Smith and C. Cheng. Slack-Based Heuristics for

Constraint Satisfaction Scheduling. In Proc. AAAI-93,

1993.

[6] D. Smith, J. Frank and A. Jonsson. Bridging the Gap

Between Planning and Scheduling. In Knowledge Engi-

neering Review, 2000.

[7] R. Dechter and I. Meiri and J. Pearl. Temporal Con-

straint Networks In Artificial Intelligence, vol. 49, 1991.

[8] R Lopez and R Esquirol. Consistency enforcing in

Scheduling: A general formulation based on energetic

reasoning 5th. International Workshop on Project Man-

agement and Scheduling PMS'96, 1996.

